DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination.
نویسندگان
چکیده
Bacteriophage-encoded serine recombinases have great potential in genetic engineering but their catalytic mechanisms have not been adequately studied. Integration of ϕBT1 and ϕC31 via their attachment (att) sites is catalyzed by integrases of the large serine recombinase subtype. Both ϕBT1 and ϕC31 integrases were found to cleave single-substrate att sites without synaptic complex formation, and ϕBT1 integrase relaxed supercoiled DNA containing a single integration site. Systematic mutation of the central att site dinucleotide revealed that cleavage was independent of nucleotide sequence, but rejoining was crucially dependent upon complementarity of the cleavage products. Recombination between att sites containing dinucleotides with antiparallel complementarity led to antiparallel recombination. Integrase-substrate pre-incubation experiments revealed that the enzyme can form an attP-integrase tetramer complex that then captures naked attB DNA, and suggested that two alternative assembly pathways can lead to synaptic complex formation.
منابع مشابه
Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage ϕBT1
We have established the integrase of the Streptomyces phage phiBT1 as a tool for eukaryotic genome manipulation. We show that the phiBT1 integrase promotes efficient reciprocal and conservative site-specific recombination in vertebrate cells and in Schizosaccharomyces pombe, thus establishing the utility of this protein for genome manipulation in a wide range of eukaryotes. We show that the phi...
متن کاملSynapsis and DNA cleavage in fC31 integrase- mediated site-speci®c recombination
The Streptomyces phage fC31 encodes an integrase belonging to the serine recombinase family of sitespeci®c recombinases. The well studied serine recombinases, the resolvase/invertases, bring two recombination sites together in a synapse, and then catalyse a concerted four-strand staggered break in the DNA substrates whilst forming transient covalent attachments with the recessed 5¢ ends. Rotati...
متن کاملSequences in attB that affect the ability of ϕC31 integrase to synapse and to activate DNA cleavage
Phage integrases are required for recombination of the phage genome with the host chromosome either to establish or exit from the lysogenic state. C31 integrase is a member of the serine recombinase family of site-specific recombinases. In the absence of any accessory factors integrase is unidirectional, catalysing the integration reaction between the phage and host attachment sites, attP x att...
متن کاملSequences in attB that affect the ability of rC31 integrase to synapse and to activate DNA cleavage
Phage integrases are required for recombination of the phage genome with the host chromosome either to establish or exit from the lysogenic state. rC31 integrase is a member of the serine recombinase family of site-specific recombinases. In the absence of any accessory factors integrase is unidirectional, catalysing the integration reaction between the phage and host attachment sites, attP attB...
متن کاملIdentification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome
Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular cell biology
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2010